Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______ / \ ___5__ ___1__ / \ / \ 6 _2 0 8 / \ 7 4
For example, the lowest common ancestor (LCA) of nodes 5
and 1
is 3
. Another example is LCA of nodes 5
and 4
is 5
, since a node can be a descendant of itself according to the LCA definition.
经典问题!
方法一:找到两个节点的路径,然后根据路径找LCA。
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */class Solution {public: void getPath(TreeNode *root, TreeNode *p, TreeNode *q, vector&path, vector &path1, vector &path2) { if (root == NULL) return; path.push_back(root); if (root == p) path1 = path; if (root == q) path2 = path; //找到两个节点后就可以退出了 if (!path1.empty() && !path2.empty()) return; getPath(root->left, p, q, path, path1, path2); getPath(root->right, p, q, path, path1, path2); path.pop_back(); } TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { vector path, path1, path2; getPath(root, p, q, path, path1, path2); TreeNode *res = root; int idx = 0; while (idx < path1.size() && idx < path2.size()) { if (path1[idx] != path2[idx]) break; else res = path1[idx++]; } return res; }};
方法二:节点a与节点b的公共祖先c一定满足:a与b分别出现在c的左右子树上(如果a或者b本身不是祖先的话)。
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */class Solution {public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (root == NULL) return NULL; if (root == p || root == q) return root; TreeNode *L = lowestCommonAncestor(root->left, p, q); TreeNode *R = lowestCommonAncestor(root->right, p, q); if (L && R) return root; return L ? L : R; }};